
Stereo Vision of Liquid and Particle Flow for Robot Pouring

Akihiko Yamaguchi1 and Christopher G. Atkeson1

Abstract— We explore stereo vision for recognizing liquid and
particle flow as 3D points (a point cloud). In our pouring
research [1], we noticed that we could detect liquid flow
using optical flow detection, especially with the Lucas-Kanade
method [2]. In this paper we extend this idea so that we can
reconstruct 3D liquid flow from a stereo camera in order to
learn dynamical models of flow. Such dynamical models would
be useful to reason about pouring behaviors. We demonstrate
our method in pouring various materials: water, coke, jelly,
dish liquid, and creamer powder. The results show that our
method could detect the 3D flow as a point cloud, and they
captured the actual flow phenomenon. We also show that our
method works in a robot pouring scenario.
Accompanying video: https://youtu.be/2oFjVJwXhKs

I. INTRODUCTION

Pouring is a fundamental daily life skill. While pouring
is a stand-alone task, sometimes it is involved in other tasks
such as cooking. Making robots that are capable of pouring
is useful, but this is still a difficult problem. Although there
are many studies of robot pouring [3], [4], [5], [6], [7], [8],
[9], [10], [11], [12], [13], all of them are situation specific
pouring. The difficulties of pouring are: (1) Pouring is a de-
formable object manipulation. (2) Pouring involves different
strategies, e.g. tipping a cup of water, shaking a ketchup
bottle, and squeezing a shampoo bottle. (3) Modeling liquid
and particle behavior is difficult. (4) Perception of flow is
difficult.

We are exploring robot pouring as a case study of ma-
nipulating deformable objects [14] and in a robot learning
context [15], [16], [1], [17]. In [14], we considered many
variations of pouring, such as materials, container shapes,
initial poses of containers, and target amounts. Through these
studies including robot experiments with a PR2 and a Baxter
robot as well as dynamic simulation experiments, we found:
(A) Adaptation of skill (e.g. adjusting shaking parameters
for a new material and container) is not difficult [14]. (B) A
model-based reinforcement learning approach gives us a
comprehensive solution to planning and learning problems
in pouring [16]. (C) A model-based reinforcement learning
can generalize (learned pouring behavior works in unexpe-
rienced situations) [17]. (D) Learning dynamical system is
improved by decomposition of dynamics into subtasks [15].
(E) Stochastic neural networks are useful in learning dynam-
ics [1]. Based on these findings, we conducted robot exper-
iments with the PR2 robot, and obtained positive results as
reported in [1]. However the implementation for perceiving
material flow did not perform as well as we would like. As

1A. Yamaguchi and C. G. Atkeson are with The Robotics Institute,
Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh PA 15213,
United States info@akihikoy.net

Fig. 1. How the Lucas-Kanade optical flow detection [2] works with
water flow. Left: camera view. Right: optical flow. In order to obtain the
right image, we applied the optical flow detection method, thresholded at
a certain speed, and applied “erode” and “dilate” operators. Refer to the
accompanying video.

we discussed in [15], learning dynamics of pouring needs
to perceive (a) the amount of the material in the source
container, (b) the amount of the material in the receiving
container, and (c) flow properties including flow existence,
flow position in 3D coordinates, flow amount, and flow shape
(width/variance or a more informative representation). This
paper focuses on solving (c); we develop a flow tracking
method.

The (material) flow detection used in [1] is based on the
Lucas-Kanade method [2] implemented in OpenCV (http:
//opencv.org/) for obtaining optical flow during pour-
ing. We noticed that we can detect liquid and particle flows
including water flow by measuring optical flow with an
RGB camera as shown in Fig. 1. In [1], we used two RGB
cameras to obtain flow position in 3D. However there were
issues: (I) human operators were replacing the cameras for
each experiment which was inconsistent over many trials,
and (II) it was hard to distinguish the optical flow of the
robot movement (especially the shaking motion) and material
flow. For the purpose of (II), we used color information
of the material, but it was inaccurate due to the difficulty
of capturing moving material and it was not applicable to
transparent liquids. In this paper, we apply a stereo vision
method to reconstruct 3D liquid flow from the optical flow
of two cameras. This method provides 3D liquid flow as a
point cloud, from which we can extract the information of (c)
mentioned above. Since we do not use the color information
of material, our new method is applicable to transparent
liquids. The point cloud of liquid flow can be transformed

https://youtu.be/2oFjVJwXhKs
http://opencv.org/
http://opencv.org/


into the robot frame, so it is easy to remove the movements
of the robot and the environment.

We test our method by applying it to various materials
including liquids and granular materials. The results show
that our method can detect 3D flow points, and capture the
actual flow phenomenon. We also apply our method to robot
pouring where plastic beads are poured. The results show that
our method works in the robot pouring scenario. We think
our method has wide applications including flow detections
of daily-life robotic tasks and industrial tasks.

Related Work

There is much work on robot pouring [3], [4], [5], [6], [7],
[8], [9], [10], [11], [12], [13] including learning to improve
pouring skills. However they used a limited perception of
materials.

An industrial pouring task (pouring molten metal into a
mold) was researched in [3], [4]. An electric resistance-type
level sensor was used to measure the liquid levels in the
source container [3], [4]. A laser sensor was used to measure
the liquid levels in the receiver containers [4].

In [8], [9], a scale was used to weigh the amount poured
into a receiving container. In [11], a method to detect impor-
tant parts of container from a point cloud was developed. It
could detect the opening of a container. Some studies directly
or indirectly measured an amount in the source or receiving
container with a force-torque sensor attached on the wrist of
the robot arm [10], [12]. In [11], [5], [6], [7], [13], no amount
sensor was used. In these researches, the initial amount of
the source container was within the capacity of the receiving
container.

An interesting approach to measuring flow was proposed
in [18] where a water flow was perceived from audio
information. The robot could recognize if water was poured
into a container or a non-container object based on the sound.
Another study of liquid perception was water detection for
unmanned ground vehicles [19] where water in the environ-
ment such as a puddle or pond was detected.

Optical flow methods are fundamental computer vision
tools in robotics to detect movement of objects. An applica-
tion is navigation of small UAVs [20], [21]. However it is not
popular to apply an optical flow method to detect liquid flow.
As stereo vision, our approach is a kind of sparse stereo.
While dense stereo methods compute disparities for all
corresponding points of two images, sparse stereo methods
compute disparities for a limited number of feature points.
Schauwecker et al. proposed a feature detector for sparse
stereo [22]. Witt et al. proposed an edge-based search as
a sparse stereo method [23], [24], which is close to ours.
However using optical flow would be more adequate for
detecting liquid flow, rather than edges. Using optical flow
in stereo vision is a popular approach [25], [26], [27]. We
are focusing on detecting liquids with optical flow. Although
this paper does not provide a novel technique of computer
vision, the case study of 3D flow perception would be a novel
challenge.

Recently deep neural networks have been used to detect
and track liquid flow [28]. In order to train the neural
networks, they generated large amounts of labeled pouring
data using a liquid simulator and a rendering engine. They
reported that using multiple frames was better than using
a single frame, which is close to our idea used in [1]:
optical flow can perceive liquid flow. They also showed that
a recurrent network with LSTM (long short-term memory)
worked well. However they did not mention if they could
distinguish flow from robot movement that we had trouble
with in [1]. Our approach is superior to theirs in estimating
3D liquid flow. Additionally our method can detect flows of
viscous liquids such as jelly and granular materials such as
powder.

II. STEREO VISION OF LIQUID AND PARTICLE FLOW
DETECTION

First we apply an optical flow detection using the Lucas-
Kanade method [2], implemented in OpenCV, to each image
of a stereo camera. Spatial and temporal filters are applied
to the optical flow images to compensate for the delay
between the left and right cameras. Spatial filters also remove
noise. Then we apply a stereo method to the two images to
reconstruct 3D flow. Since the images from the optical flow
are texture-less, we do not apply a standard stereo method
like block matching. Instead, by assuming that flow is a
vertical thin line or curve, we compute only a single disparity
per each epipolar line, and find matching points around the
peak. Consequently we can reconstruct 3D flow robustly.
Obviously this method decreases accuracy when the flow has
a complicated shape. According to our experience of learning
flow dynamics and planning with them [15], [1], we think
this inaccuracy will not be a big issue. Another issue will
be that the movement of the robot body and environment is
detected inaccurately. In this section we also discuss a way
to remove such non-flow movements.

A. Optical Flow

We apply the Lucas-Kanade method to detect optical
flow, remove noise by applying a spatial filter, and apply
a temporal filter.

We use the cvCalcOpticalFlowLK function imple-
mented in OpenCV (we use a “legacy” implementation with
parameters (3, 3) for the window size). This function takes
a grayscale images of the current and the previous frames,
and returns horizontal and vertical components of velocity
for every pixel. Let vx(u, v), vy(u, v) denote the x and
y velocity at (u, v) respectively. We calculate a “speed”
image by Ispd(u, v) =

√
(vx(u, v))2 + (vy(u, v))2, and re-

move noise by thresholding: Iflw1(u, v) = 1 if Ispd(u, v) >
ith spd otherwise 0. The value of ith spd was 5 in our exper-
iments (with the cameras of 640x480 pixels, 60 FPS).

The issues of using Iflw1(u, v) directly are: (1) Iflw1(u, v)
is noisy especially when we use a stereo camera mounted on
a robot (the robot is slightly vibrating). (2) The flow is not
detected similarly between the two cameras because flow is
a subtle phenomenon, and our cameras are not synchronized.



We apply multiple spatial and temporal filters. The pa-
rameters below are the values used in our experiments.
(A) Apply an “erode” (size 1) and “dilate” (size 1) operator
to Iflw1(u, v) for noise reduction, and obtain Iflw2(u, v).
(B) Apply a temporal filter; we simply take a pixel-wise OR
operation of Iflw2(u, v) over a filter length (5), and obtain
Iflw3(u, v). (C) Apply “dilate” (size 6), “erode” (size 8),
“dilate” (size 10), and a filter with a vertically-long kernel
(1x20, filled with 1/20) in this order to Iflw3(u, v), and
obtain Ifmask(u, v). (D) Mask Iflw3(u, v) with Ifmask(u, v),
and obtain Iflw4(u, v). (E) Apply the filter with the vertically-
long kernel (the same as above) to Iflw4(u, v), and obtain
Iflw5(u, v), which is the final outcome of the flow detection.
(A) is for a noise reduction of optical flow. (B) and (E) are
for handling the issue (2). (C) and (D) are for stronger noise
reduction than (A).

We apply the above calculation for each frame of the
left and right images independently. Let IffL(u, v), IffR(u, v)
denote the left and right flow images obtained by the above
procedure respectively.

B. Reconstruct 3D Flow

First we find a disparity of a right image from a left image
for each epipolar line where the correlation is maximized.
Then we search “sparse matching points” between left and
right images around the disparity. Finally we reconstruct 3D
points from them.

We assume that IffL(u, v) and IffR(u, v) are already recti-
fied for computing stereo disparity, i.e. each horizontal line
is an epipolar line.

The correlation is computed as a sum of a
pixel-wise AND operation: for each epipolar
line at vertical position v, Icorr(v, d) =∑

u (1 if IffL(u, v) > 0 and IffR(u− d, v) > 0 otherwise 0).
The disparity at v is given by d∗(v) = argmaxd Icorr(v, d).
Note that if maxd Icorr(v, d) is smaller than ith match = 16,
we assume that there are no matching points at v. The sparse
matching points are computed as follows: for each vertical
position v, find all points {u} on the epipolar line that satisfy
IffL(u, v) > ith exist and IffR(u− d∗(v), v) > ith exist. That
is, we find points that exist in both images around the
disparity. From the point pairs {u, v} and {u − d∗(v), v},
we reconstruct the 3D points. These are the candidates
of 3D flow points. Note that they may include moving
points such as a robot body. The value of ith exist used in
our experiments was 0.08. For a faster computation, we
processed the epipolar line every 10 vertical pixels.

C. Inaccuracy of 3D Flow Points

The inaccuracy of 3D flow points would be caused by the
flow stereo computation where we find only one disparity
per each epipolar line. When the material flow is forming a
line or a curve, this assumption would be reasonable. This
assumption can be violated by moving objects such as a
robot body. This issue is reduced by the region of interest
described in the next section.

D. Region of Interest

We consider two types of ROI (Region of Interest). (1) A
ROI applied to image planes. We define a ROI in 3D space
as a primitive shape such as a cone and a polygon, and map
it onto the left and the right image planes. We compute the
3D flow computation only in the ROI. (2) A ROI applied to
the 3D flow points. We use the 3D flow points existing in
a ROI defined in 3D space as a primitive shape such as a
cone and a bounding box. Both (1) and (2) are similar, but
(1) improves the efficiency of the stereo computation.

Additionally (1) is useful to remove inaccurate 3D flow
points such as the robot movement as we discussed above.
Usually we have a robot geometry model and a kinematic
state of the robot, thus we can define a 3D region to remove
from the 3D flow points. If we map the 3D region to the
image planes, we do not compute the 3D flow points in that
region. Hence we can omit computing flow points that would
be due to robot movement. A drawback is (1) removes more
than (2), i.e. we can define finer 3D ROI with (2). Thus a
good way is combining the two methods of ROI.

III. DISCUSSION: UNDERSTANDING FLOW DYNAMICS

Here we discuss using 3D flow points in learning flow
dynamics. The elements involved in flow dynamics are a
source container, a receiving container, material amounts in
containers, and flow. We need to consider 3D information of
the containers and the flow to understand the flow dynamics.
The material comes from the opening of the source container,
becomes flow, and goes into the receiving container through
its opening. Thus finding the openings of containers is
necessary as well as the 3D flow points.

In our preliminary experiments, we used a depth sensor to
obtain the position and orientation of containers for grasping
and pouring. Since we had geometry models of the contain-
ers, we could obtain the opening information from them.
However we noticed that this approach has an issue: since
we used different sensors for obtaining opening information
(the depth sensor) and 3D flow points (the stereo camera),
the calibration accuracy was critical. If the calibration (of
the sensor poses) had an error, the dynamical models learned
from the opening information and the 3D flow points became
unreliable.

In this paper we propose a different approach. We obtain
all information that are used in modeling the flow dynamics
from the same sensor. Concretely we obtain the opening
information as well as the 3D flow points from the stereo
camera. Even if the calibration had an error, the learned
dynamical models would be more reliable since the position
of the opening and the 3D flow points obtained from the
stereo camera still have correct relationship.

We implement a simple opening finding algorithm. We
define a opening of a container as a polygon. From a
current container pose estimated in some way, we render
the opening polygon on the stereo image planes. We apply
an edge detection filter to the stereo images. We calculate
the correlation between the rendered opening polygons and
the edges on the images. The opening fitting is done by an



Fig. 2. (a) Setup of the experiments. (b) Containers.

optimization method in terms of the container pose so that
the pose maximizes this correlation.

IV. EXPERIMENTS: LIQUID AND PARTICLE FLOW

We apply the 3D flow point estimation to flows of various
materials. The setup of the experiment is shown in Fig. 2(a).
As the receiving container, we use a plastic cup of diameter
10 cm on the table. The cup is in a 15 cm x 15 cm tray.
We use a stereo camera attached to the right arm of a Baxter
robot, thus we obtain 3D observations in the robot frame.
The stereo camera is a pair of two USB cameras; each one
is ELP Co. USBFHD01M with a wide lens. Each camera
can capture images of 640x480 pixels in 60 FPS (frames per
second). The left and the right images are not synchronized.
Refer to the accompanying video.

We implement the 3D flow detection algorithm as fast as
possible with careful thread programing. Each capture and
optical flow detection is executed independently. The optical
flow detection was actually done in more than 50 FPS. We
calculate the flow stereo in every third optical flow detection.
Note that since we use a temporal filter with length 5 frames
as mentioned in Section II-A, this frame drop would not miss
the flow. We use the same parameters of the 3D flow point
estimation through the following experiments.

In each experiment, first we apply the opening detection
method to find the opening of receiving container. We do not
move the receiving container during the experiment. We ask
a human to pour liquid or powder from a source container.
During pouring, we measure the 3D flow points with our
method.

In order to analyze the results quantitatively, we define an
average flow position calculated at each frame. The average
flow position is an average of the 3D flow points except for
the points whose height (z value) are greater than a specific
value. The excluded points are considered as a container or
an operator movement.

A. Flow of Water

First, we ask a human to pour water from a bottle. During
pouring, the human is asked to move the source container
in some ways: moving sideways (−y and +y directions),
moving forward and backward (+x and −x directions),
moving circularly, and moving to pour into the tray (outside
the receiving container).

Fig. 3. Snapshot of the flow detection program in pouring water. Top-left
two images: left and right camera views. Bottom-left two images: detected
flows (colored according to the x position). Right two images: 3D rendering
view with a receiving container, a right gripper of the robot, and the stereo
camera on it; top: +y-directional view, bottom: +x-directional view.

Fig. 4. Trajectories of the average flow position per time during pouring
water. The position is relative to the center of the receiver opening.

Fig. 5. Snapshot of the flow detection program in pouring water. Refer to
the caption of Fig. 3.

Fig. 3 shows a snapshot during pouring. You can see
the water flow is detected as optical flow, and the 3D
flow points are reconstructed as rendered in the viewers.
Fig. 4 shows the x and y trajectories of the average flow
position relative to the center of the receiver opening.
The disconnections of curves mean that the flow was not



Fig. 6. Trajectories of the average flow position per time during pouring
water. The position is relative to the center of the receiver opening.

observed during these periods. In the first two parts (1
sec to 18 sec), the actual flow was moving via (x, y) =
(0, 0), (0,−r), (0,+r), (0, 0), (+r, 0), (−r, 0), (0, 0) (r is a
moving radius). The trajectories are close to this movement.
There are some jumps of y in the forward and backward
movement. They were caused by the container movement
(the height threshold to exclude container movement was
inaccurate). The big jump around 20 sec was due to the
same reason where the human took a backwards motion of
the source container. In the last part (after 22 sec), the source
container was moving circularly. From the graph, we can see
that the average flow position is moving like a circle. Be
aware that the flow positions are almost always within the
edge of the receiver opening (diameter 5 cm).

Fig. 6 shows the x and y trajectories of the average flow
position during pouring into the box. The actual flow was
outside the receiving container (diameter 5 cm), which cor-
responds to the trajectories. Fig. 5 shows a snapshot during
pouring. In the rendered images, the 3D flow points are
clearly outside the container.

B. Flow of Colored Liquid

We ask a human to pour coke from a can. During pouring,
the human is asked to move the source container similarly
to the water case: moving sideways (−y and +y directions),
moving forward and backward (+x and −x directions), and
moving circularly.

Fig. 7 shows the x and y trajectories of the average flow
position relative to the center of the receiver opening. We
can see the sideways movement, the forward and backward
movement, and the circular movement. However even during
the forward and backward movement (+x and −x direc-
tions), y is changing. This was caused by the instability of the
material flow, i.e. this was a real phenomenon. The human
poured by rotating the can around the x axis, so the flow was
stable in the x direction (x change was small), but there was
uncontrolled waving in y. Fig. 8 shows a snapshot during
pouring. We can see the 3D point reconstruction similar to
that of the water case. Fig. 9 shows another snapshot where
the flow was very thin; a part of the flow was droplets. The

Fig. 7. Trajectories of the average flow position per time during pouring
coke. The position is relative to the center of the receiver opening.

Fig. 8. Snapshot of the flow detection program in pouring coke. Refer to
the caption of Fig. 3.

Fig. 9. Snapshot of the flow detection program in pouring coke. Refer to
the caption of Fig. 3.

flow in the camera views is not clear, but the optical flow
could detect the flow. The 3D flow points were reconstructed
as well.

C. Flow of Jelly, Dish Liquid, and Powder

We ask a human to pour three types of materials: blueberry
jelly (very viscous, blue color), dish liquid (slightly viscous,
transparent green), and creamer powder (white color). These
containers are shown in Fig. 2(b).



Fig. 10. Snapshot of the flow detection program in pouring jelly. Since
the views are not synchronized, this snapshots are composed from two time
frames. Refer to the caption of Fig. 3.

Fig. 11. Snapshot of the flow detection program in pouring dish liquid.
Refer to the caption of Fig. 3.

Fig. 10, 11, and 12 show snapshots during pouring jelly,
dish liquid, and creamer powder respectively. The jelly flow
was a discontinuous sequence of big blocks, and the dish
liquid flow was similar to the water and the coke flows but
was more thin and smooth. The creamer powder flow was
unlike all of them; the flow spread from top to bottom. We
could recognize these differences even from the 3D flow
points. Since the creamer powder was not smooth, the human
waved the container. This motion was detected as the 3D flow
points as shown in 12.

Fig. 13 shows the x and y trajectories of the average
flow position of jelly, dish liquid, and creamer powder
respectively. The human tried to control the flow around
the center of the receiving container. From the trajectories,
we can see the significant difference of the materials. There
are many gaps (disconnections) in jelly. Actually the flow
was a discontinuous sequence as mentioned above. The
flow of dish liquid is more smooth. The flow of creamer
powder has bigger deviation, which also corresponds with
the actual phenomenon; the powder flow spread widely. Thus
our method could detect the 3D flow points, and they were
capturing the actual flow dynamics.

Fig. 12. Snapshot of the flow detection program in pouring creamer powder.
Refer to the caption of Fig. 3.

Fig. 13. Trajectories of the average flow position per time during pouring
jelly, dish liquid, and creamer powder. The position is relative to the center
of the receiver opening.

Fig. 14. Setup of the experiments for accuracy evaluation.

V. EXPERIMENTS: ACCURACY EVALUATION

We evaluate the accuracy of the flow position estimates
informally. The setup of the experiments is shown in Fig. 14.
We let the Baxter robot hold a source container with its left
gripper. A liquid guide (a thin plastic tube whose internal
diameter is 2.5 mm) is attached to the bottom of the source
container in order to generate straight flow. In the experi-
ments, we place the left arm so that the liquid guide locates
at the center of the receiving container. Then we move the
left arm to five different positions: (dx, dy) = (0, 0), (dl, 0),
(−dl, 0), (0, dl), and (0,−dl) where (dx, dy) denotes the x



Fig. 15. x and y positions of the average flow relative to the center of the
receiver opening. The direction to the stereo camera is illustrated with an
arrow.

and y offset from the initial position, and dl = 0.02 m. At
each position, a human pours water into the source container,
and observes the flow.

Fig. 15 shows the x and y positions of the average flow
relative to the center of the receiver opening. There are three
different types of errors: (1) 10 to 15 mm offset along the
depth direction of the stereo camera, which seems to be
a common value in all targets. (2) Small variance in each
target. (3) A few outliers. (1) is the dominant error. The
possible error sources are as follows: (A) The inaccuracy of
the 3D flow estimation mentioned in Section II-C. (B) The
error of the stereo camera calibration. (C) The error of the
opening detection. (D) The control error of the Baxter robot.
(E) The error of the initial position of the source container.
(F) A slight movement of water flow. For distinguishing
these error sources, we need to conduct more organized
experiments. Since the dominant error (1) seems to be
consistent for the different targets, we would be able to
reduce this error somehow. We think our method has a good
accuracy.

VI. EXPERIMENTS: ROBOT POURING

We explore how our method works in a robot pouring
situation. We use the Baxter robot and the stereo camera
used in the previous experiments. Fig. 16 shows the setup.
Because of the hardware limitation, the stereo camera works
at 30 FPS. We use a pouring behavior represented as state
machines developed in [14]. The parameters of the actions
are planned by their method, including pouring location.
Refer to the accompanying video.

We use the two types of ROI as mentioned in Section II-
D. ROI-1 is applied to the image planes. We use a prior
knowledge that flow goes downwards from the opening of
the source container. ROI-1 is a cone whose vertex is at
the center of the opening of the source container, the cone’s
opening angle is 30◦, and its orientation is upright in 3D
space (does not change). ROI-2 is applied to the flow points

Fig. 16. Setup of the robot pouring experiments. A stereo camera is
mounted on the right wrist of the robot.

Fig. 17. Snapshot of the flow detection program in robot pouring. Top-left
two images: left and right camera views with color detection for measuring
the poured amount. Bottom-left two images: detected flows. Right image:
3D rendering view.

in 3D space to remove non-flow points remaining after ROI-
1. These are caused by the movement of the source container
and the robot body. ROI-2 is also a cone whose vertex is
at the center of the opening of the source container, the
cone’s opening angle is 60◦, and its orientation is upside-
down of the source container orientation. Unlike ROI-1, the
orientation of ROI-2 changes with the orientation of the
source container.

We use blue plastic beads as the material to be poured.
Fig. 17 shows a snapshot in pouring by the robot. The
variance of the flow seems to be large. This was due to the
material property; the plastic beads were close to powder,
rather than liquids. Fig. 18 shows the x and y trajectories of
the average flow position. There are two reasons of the gaps
(disconnections): (1) there were actually no flow, and (2) our
method failed to detect. The major reason of (2) would be
the frame rate of the cameras (30 FPS). For increasing the
reliability, we should increase the frame rate. However the
flow points captured in 30 FPS still seem to have useful
information for learning.

VII. CONCLUSION

We explored stereo vision for recognizing liquid and
particle flow as 3D points. Based on our pouring research [1]
where we detected flow using optical flow detection, espe-
cially the Lucas-Kanade method [2], we extended the idea
so that we can reconstruct the 3D flow from a stereo camera.



Fig. 18. Trajectories of the average flow position per time during robot
pouring. The position is relative to the center of the receiver opening.

The purpose of this work is for learning the dynamical mod-
els of flow, which would be useful to reason about pouring
behaviors. We demonstrated our method in pouring various
materials: water, coke, jelly, dish liquid, and creamer powder.
We also applied our method to robot pouring where plastic
beads were poured. The results showed that our method
could detect 3D flow points, and they were capturing the
actual flow phenomenon. Future work includes (1) increasing
the robustness of perception by reducing the number of
parameters (especially those of spatial and temporal filters),
and (2) experiments to evaluate the accuracy of the 3D flow
points in a way more organized than that in Section V.

REFERENCES

[1] A. Yamaguchi and C. G. Atkeson, “Neural networks and differ-
ential dynamic programming for reinforcement learning problems,”
in the IEEE International Conference on Robotics and Automation
(ICRA’16), 2016.

[2] B. D. Lucas and T. Kanade, “An iterative image registration technique
with an application to stereo vision,” in the 7th international joint
conference on Artificial intelligence (IJCAI’81), 1981, pp. 674–679.

[3] K. Yano, T. Toda, and K. Terashima, “Sloshing suppression control of
automatic pouring robot by hybrid shape approach,” in Decision and
Control, 2001. Proceedings of the 40th IEEE Conference on, vol. 2,
2001, pp. 1328–1333.

[4] Y. Noda, K. Yano, and K. Terashima, “Control of self-transfer-type
automatic pouring robot with cylindrical ladle,” IFAC Proceedings
Volumes, vol. 38, no. 1, pp. 295–300, 2005.

[5] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal, “Learning and
generalization of motor skills by learning from demonstration,” in
the IEEE International Conference on Robotics and Automation
(ICRA’09), 2009, pp. 763–768.

[6] M. Mühlig, M. Gienger, S. Hellbach, J. J. Steil, and C. Goerick, “Task-
level imitation learning using variance-based movement optimization,”
in the IEEE International Conference on Robotics and Automation
(ICRA’09), 2009, pp. 1177–1184.

[7] R. Jäkel, S. Schmidt-Rohr, M. Losch, and R. Dillmann, “Repre-
sentation and constrained planning of manipulation strategies in the
context of programming by demonstration,” in the IEEE International
Conference on Robotics and Automation (ICRA’10), 2010, pp. 162–
169.

[8] M. Tamosiunaite, B. Nemec, A. Ude, and F. Wörgötter, “Learning to
pour with a robot arm combining goal and shape learning for dynamic
movement primitives,” Robotics and Autonomous Systems, vol. 59,
no. 11, pp. 910–922, 2011.

[9] B. Akgun, M. Cakmak, K. Jiang, and A. L. Thomaz, “Keyframe-based
learning from demonstration - method and evaluation,” I. J. Social
Robotics, vol. 4, pp. 343–355, 2012.

[10] L. Rozo, P. Jiménez, and C. Torras, “Force-based robot learning of
pouring skills using parametric hidden Markov models,” in the IEEE-
RAS International Workshop on Robot Motion and Control (RoMoCo),
2013.

[11] S. Brandl, O. Kroemer, and J. Peters, “Generalizing pouring ac-
tions between objects using warped parameters,” in the 14th IEEE-
RAS International Conference on Humanoid Robots (Humanoids’14),
Madrid, 2014, pp. 616–621.

[12] L. Rozo, J. a. Silvério, S. Calinon, and D. G. Caldwell, “Learning
controllers for reactive and proactive behaviors in human-robot col-
laboration,” Frontiers in Robotics and AI, vol. 3, no. 30, 2016.

[13] C. Bowen and R. Alterovitz, “Asymptotically optimal motion plan-
ning for tasks using learned virtual landmarks,” IEEE Robotics and
Automation Letters, vol. 1, no. 2, pp. 1036–1043, 2016.

[14] A. Yamaguchi, C. G. Atkeson, and T. Ogasawara, “Pouring skills with
planning and learning modeled from human demonstrations,” Interna-
tional Journal of Humanoid Robotics, vol. 12, no. 3, p. 1550030, 2015.

[15] A. Yamaguchi and C. G. Atkeson, “Differential dynamic programming
with temporally decomposed dynamics,” in the 15th IEEE-RAS Inter-
national Conference on Humanoid Robots (Humanoids’15), 2015.

[16] ——, “A representation for general pouring behavior,” in in the
Workshop on SPAR in the 2015 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS’15), 2015.

[17] ——, “Model-based reinforcement learning with neural networks on
hierarchical dynamic system,” in the Workshop on Deep Reinforcement
Learning: Frontiers and Challenges in the 25th International Joint
Conference on Artificial Intelligence (IJCAI2016), 2016.

[18] S. Griffith, V. Sukhoy, T. Wegter, and A. Stoytchev, “Object catego-
rization in the sink: Learning behavior-grounded object categories with
water,” in the 2012 ICRA Workshop on Semantic Perception, Mapping
and Exploration, 2012.

[19] A. Rankin and L. Matthies, “Daytime water detection based on color
variation,” in Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ
International Conference on, 2010, pp. 215–221.

[20] M. V. Srinivasan, “Visual control of navigation in insects and its
relevance for robotics,” Current Opinion in Neurobiology, vol. 21,
no. 4, pp. 535 – 543, 2011.

[21] H. Chao, Y. Gu, and M. Napolitano, “A survey of optical flow
techniques for robotics navigation applications,” Journal of Intelligent
& Robotic Systems, vol. 73, no. 1, pp. 361–372, 2014.

[22] K. Schauwecker, R. Klette, and A. Zell, “A new feature detector and
stereo matching method for accurate high-performance sparse stereo
matching,” in 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2012, pp. 5171–5176.

[23] J. Witt and U. Weltin, “Sparse stereo by edge-based search using
dynamic programming,” in Pattern Recognition (ICPR), 2012 21st
International Conference on, 2012, pp. 3631–3635.

[24] ——, “Robust real-time stereo edge matching by confidence-based
refinement,” in International Conference on Intelligent Robotics and
Applications. Springer Berlin Heidelberg, 2012, pp. 512–522.

[25] N. Slesareva, A. Bruhn, and J. Weickert, Optic Flow Goes Stereo:
A Variational Method for Estimating Discontinuity-Preserving Dense
Disparity Maps, 2005, pp. 33–40.

[26] C. Unger, E. Wahl, and S. Ilic, Efficient Stereo and Optical Flow with
Robust Similarity Measures, 2011, pp. 246–255.

[27] M. Hatzitheodorou, E. Karabassi, G. Papaioannou, A. Boehm, and
T. Theoharis, “Stereo matching using optic flow,” Real-Time Imaging,
vol. 6, no. 4, pp. 251–266, 2000.

[28] C. Schenck and D. Fox, “Detection and tracking of liquids with fully
convolutional networks,” ArXiv e-prints, no. arXiv:1606.06266, 2016.


	Introduction
	Stereo Vision of Liquid and Particle Flow Detection
	Optical Flow
	Reconstruct 3D Flow
	Inaccuracy of 3D Flow Points
	Region of Interest

	Discussion: Understanding Flow Dynamics
	Experiments: Liquid and Particle Flow
	Flow of Water
	Flow of Colored Liquid
	Flow of Jelly, Dish Liquid, and Powder

	Experiments: Accuracy Evaluation
	Experiments: Robot Pouring
	Conclusion
	References

